当前位置:新闻中心 > 行业资讯
材料科学与工程专业介绍及就业前景
2014-06-06 13:19:50
第三方平台
化工资讯网整理编辑:材料科学与工程专业的就业前景,材料科学与工程专业的就业前景如何?请问材料科学与工程专业的就业前景怎么样?材料科学与工程专业专业的就业前景分析,材料科学与工程专业就业前景如何?材料科学与工程专业的英文翻译为:Materials Science and Engineering,缩写为MSE。定义:材料科学与工程专业是以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将所学的知识应用于材料的合成、制备、结构、性能、应用等方面研究的一门学科。
业务培养目标
专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、高素质全面发展的科学研究与工程技术人才
业务培养要求
本专业学生主要是学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。并且受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。以及掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。还要掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。
上一篇
下一篇
如涉及转载授权,请联系我们!
相关标签:
什么专业就业前景好,
材料及新材料
相关阅读:
●
生物燃气产业发展趋势
万钢在深入了解北京市生物燃气科技产业化、生物燃气科技示范现状,并与专家和企业代表座谈后指出,发展生物燃气产业是促进克霾减排、保护生态环境的有效手段,科技部与北京市将在部市合作框架下,共同推进生物燃气商业应用。
《“十二五”国家战略性新兴产业发展规划》明确了发展生物质能源的具体要求,提出要以生物燃气科技创新带动商业模式创新,引导培育生物燃气战略性新兴产业,探索新农村和城镇建设中清洁能源解决方案,实现农业、能源和环境可持续循环发展,从而促进克霾减排和保护生态环境。
万钢表示,党中央国务院高度重视能源利用方式变革问题,十八大报告中明确提出:“支持节能低碳产业和新能源、可再生能源发展,确保国家能源安全”。随着我国工业化、城镇化的高速发展,化石能源短缺、环境污染加剧以及温室气体减排压力对我国国民经济持续健康发展的限制作用逐渐显现,大力发展以生物质能源为代表的清洁能源已成为国家战略选择。
发展生物燃气产业是促进克霾减排、保护生态环境的有效手段,是发展清洁能源、缓解化石能源短缺、维护能源安全的重要力量,更是实施清洁能源支撑新农村建设和城镇化战略、促进农民增收的有效途径。
万钢要求,要准确把握生物燃气产业发展趋势,通过凝练和推广多元化、市场化的商业模式,建立和完善规范化的技术集成和工艺流程,制定标准并探索建立专业化运营服务体系,建设生物燃气科技示范企业和科技产业化基地,最终培育形成生物燃气战略性新兴产业,开创我国生物燃气产业发展新局面。
●
“未来能源”的新希望
可燃冰的学名为“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占80% 99.9%,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。西方学者称其为“21世纪能源”或“未来能源”。
1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。
随着研究和勘测调查的深入,世界海洋中发现的可燃冰逐渐增加,1993年海底发现57处,2001年增加到88处。据探查估算,美国东南海岸外的布莱克海岭,可燃冰资源量多达180亿吨,可满足美国105年的天然气消耗;日本海及其周围可燃冰资源可供日本使用100年以上。
据专家估计,全世界石油总储量在2700亿吨到6500亿吨之间。按照目前的消耗速度,再有50-60年,全世界的石油资源将消耗殆尽。可燃冰的发现,让陷入能源危机的人类看到新希望。
重大战略意义下的联手勘测
今年6月2日,26名中德科学家从香港登上德国科学考察船“太阳号”,开始了对南海42天的综合地质考察。通过海底电视观测和海底电视监测抓斗取样,首次发现了面积约430平方公里的巨型碳酸盐岩。
中德科学家一致建议,将该自生碳酸盐岩区中最典型的一个构造体命名为“九龙甲烷礁”。其中“龙”字代表了中国,“九”代表了多个研究团体的合作。同位素测年分析表明,“九龙甲烷礁”区域的碳酸盐结壳最早形成于大约4.5万年前,至今仍在释放甲烷气体。
中方首席科学家、广州海洋地质调查局总工程师黄永样对此极为兴奋,他说,探测证据表明:仅南海北部的可燃冰储量,就已达到我国陆上石油总量的一半左右;此外,在西沙海槽已初步圈出可燃冰分布面积5242平方公里,其资源估算达4.1万亿立方米。
我国从1993年起成为纯石油进口国,预计到2010年,石油净进口量将增至约1亿吨,2020年将增至2亿吨左右。因此,查清可燃冰家底及开发可燃冰资源,对我国的后续能源供应和经济的可持续发展,战略意义重大。
黄永样介绍,在未来十年,我国将投入8.1亿元对这项新能源的资源量进行勘测,有望到2008年前后摸清可燃冰家底,2015年进行可燃冰试开采。战略性与危险性共同打造的“双刃剑”
迄今,世界上至少有30多个国家和地区在进行可燃冰的研究与调查勘探。
1960年,前苏联在西伯利亚发现了第一个可燃冰气藏,并于1969年投入开发,采气14年,总采气50.17亿立方米。
美国于1969年开始实施可燃冰调查。1998年,把可燃冰作为国家发展的战略能源列入国家级长远计划,计划到2015年进行商业性试开采。
日本关注可燃冰是在1992年,目前,已基本完成周边海域的可燃冰调查与评价,钻探了7口探井,圈定了12块矿集区,并成功取得可燃冰样本。它的目标是在2010年进行商业性试开采。
但人类要开采埋藏于深海的可燃冰,尚面临着许多新问题。有学者认为,在导致全球气候变暖方面,甲烷所起的作用比二氧化碳要大10 20倍。而可燃冰矿藏哪怕受到最小的破坏,都足以导致甲烷气体的大量泄漏。另外,陆缘海边的可燃冰开采起来十分困难,一旦出了井喷事故,就会造成海啸、海底滑坡、海水毒化等灾害。
由此可见,可燃冰在作为未来新能源的同时,也是一种危险的能源。可燃冰的开发利用就像一柄“双刃剑”,需要小心对待。
羌塘盆地可能富藏可燃冰
我国冻土专家在对青藏高原进行多年研究后认为,青藏高原羌塘盆地多年冻土区具备形成天然气水合物的温度和压力条件,可能蕴藏着大量可燃冰。
据中国科学院寒区旱区环境与工程研究所研究员吴青柏介绍,青藏高原是中纬度最年轻、最高大的高原冻土区,石炭、二叠和第三、第四系沉积深厚,河湖海相沉积中有机质含量高。第四系伴随高原强烈隆升,遭受广泛的冰川——冰缘作用,冰盖压力使下伏沉积物中天然气水合物稳定性增强,尤其是羌塘盆地和甜水海盆地,完全有可能具备可燃冰稳定存在的条件。
可燃冰又称天然气水合物,是固态的天然气,广泛存在于地球上,其储量预计是常规储量的2.6倍。它还是一种清洁的能源,燃烧几乎不会产生有害的污染物质。这使得这种有望成为新世纪能源新贵的物质的开采利用正紧锣密鼓地展开。
我国是世界上多年冻土分布面积第三大国,约占世界多年冻土面积的10%,其中青藏高原多年冻土区面积占世界多年冻土面积的7%。中国科学院兰州冰川冻土研究所在20世纪60年代和70年代,分别在祁连山海拔4000米的多年冻土区和青藏高原海拔4700米的五道梁多年冻土区钻探发现类似天然气水合物显示的大量征兆和现象。中国地质大学 武汉 和中南石油局第五物探大队在藏北高原羌塘盆地开展的大规模地球物理勘探成果表明 继塔里木盆地后,西藏地区很有可能成为我国21世纪第二个石油资源战略接替区。
●
“新能源”的定义及其发展
长期以来,在中国乃至世界对于“新能源”的定义比较含混,范围不够清晰,人们对于“新能源”的认识存在着一些争议,一些观点趋向过于狭义化。所谓“新能源”,确实包涵着狭义化和广义化的两个层面的定义,关键是“新”字的界定对象,这个“新”字是想区别于传统的“旧”能源利用方式及能源系统,还是想表述这仅仅是一个新的能源技术?我们认为这个“新”不仅区别于工业化时代的以化石燃料为主的能源利用形态,而且区别于旧式的只强调转换端效率,不注重能源需求侧的综合利用效率;只强调企业自身经济效益,不注重资源、环境代价的旧的传统能源利用思维模式。
目前对于新能源的狭义化定义,主要是将新能源局限在可再生能源技术之中。客观的说,仅仅谈可再生能源,而不强调“新”与“旧”的本质区别,将会严重束缚我们的创造性和新能源自身的健康发展。严格地讲,可再生能源不是新的能源利用形式,在人类进入工业革命以前是没有大规模利用化石能源的。自我们的祖先开始利用火之后,数十万年以来,可再生能源一直支撑着人类的文明进程。它是最古老的能源利用方式,只是今天当人类无法承受工业化大规模利用化石能源所带来的环境和资源的巨额代价时,我们才重新赋予可再生能源以“新”的含义,它的新不在于它的形式,而在于它在今天对于环境和资源的新的意义。它是一系列新技术;也是一系列新思维、新观念、新哲学;更是新市场、新机制和新交易。最近,中国企业投资协会、高盛高华公司董事长方风雷提出:“新能源,新文化”,将开发、利用新能源与人类的文明进程相联系,从文化层面重新审视新能源的涵义。然而,对于环境和资源具有新意义的能源利用方式不仅仅局限在可再生能源技术。
要搞清什么是新能源,就需要搞清什么是传统的能源利用形式,特别是工业化时代的能源利用特点。由于技术的发展,对能流密度和能量强度的需求日益提高,大规模的工业化生产、城市化建设都对能源系统规模化的要求日益强化。应对更强的能流密度需求,只得建造更大能流密度的能源供应系统来保障供需。
为了不断满足日益增强的能源需求,工业时代的基本法则是“规模效益”,生产形态同时强调社会分工的细化。在细化分工之后,要想提高能源的转换效率,唯一的方法就是不断扩大生产规模。因为所有的效率评价体系仅仅基于单一产品的转换端,而不是从能源利用的终端进行综合评价和系统综合优化。这种传统的能源生产利用形态,必然导致企业不断扩大能源转换装置的规模,不断加大能源输送系统的规模,也不断大量消耗和浪费能流密度高的资源,同时造成污染物的集中排放。在电力方面的主要表现是:“大电网、大电厂、特高压”;在热力行业是追求:大型热力厂、大型管网系统等等。
传统能源生产利用形态造成了一系列的问题,首先是终端能源利用效率无法提高,转换系统加大,输送能源的电网、热网、铁路、管网等都要加大,中间损失自然会增加;其次是必须大规模利用资源,一方面造成小规模的资源被忽略或浪费,另一方面被资源的规模所局限,造成可利用资源的供应出现瓶颈;其三是由于效率无法提高,导致环境污染加剧。特别是集中排放二氧化硫造成酸雨问题和大量排放温室气体导致全球变暖。全球温度升高,海平面上升,造成极端气候变化频发,不是酷暑就是严寒,又进一步加大了能源的消耗,整个能源系统和生态系统同时陷入恶性循环;其四是安全问题,大电网和超高压输电为供电安全带来了极大的隐患,造成大面积停电事故频发等问题,脆弱的电网成为恐怖分子和敌对势力要挟的把柄,成为悬在现代文明头上的“达摩克利斯剑”;再则,这种规模化的能源大生产格局,无法调动社会和民众的积极性来参与节约和优化系统能源,使能源的经营者成为孤家寡人和众矢之的。因此,人类需要在能源问题上寻找到一条新的出路,需要有多种新的能源转换和利用形态,建立多源新的能源供应体系,创造多维的能源交易机制来解决人类文明的动力问题,减少污染排放,实现可持续的发展,这就是我们所说的“广义新能源”。